skip to main content


Search for: All records

Creators/Authors contains: "Gardner, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Accurate modeling of cryospheric surface albedo is essential for ourunderstanding of climate change as snow and ice surfaces regulate the globalradiative budget and sea-level through their albedo and massbalance. Although significant progress has been made using physicalprinciples to represent the dynamic albedo of snow, models of glacier icealbedo tend to be heavily parameterized and not explicitly connected withphysical properties that govern albedo, such as the number and size of airbubbles, specific surface area (SSA), presence of abiotic and biotic lightabsorbing constituents (LACs), and characteristics of any overlyingsnow. Here, we introduce SNICAR-ADv4, an extension of the multi-layertwo-stream delta-Eddington radiative transfer model with theadding–doubling solver that has been previously applied to represent snowand sea-ice spectral albedo. SNICAR-ADv4 treats spectrally resolved Fresnelreflectance and transmittance between overlying snow and higher-densityglacier ice, scattering by air bubbles of varying sizes, and numerous typesof LACs. SNICAR-ADv4 simulates a wide range of clean snow and ice broadbandalbedo (BBA), ranging from 0.88 for (30 µm) fine-grain snow to 0.03for bare and bubble-free ice under direct light. Our results indicate thatrepresenting ice with a density of 650 kg m−3 as snow with norefractive Fresnel layer, as done previously, generally overestimates theBBA by an average of 0.058. However, because mostnaturally occurring ice surfaces are roughened “white ice”, we recommendmodeling a thin snow layer over bare ice simulations. We find optimalagreement with measurements by representing cryospheric media with densitiesless than 650 kg m−3 as snow and larger-density media as bubbly icewith a Fresnel layer. SNICAR-ADv4 also simulates the non-linear albedoimpacts from LACs with changing ice SSA, with peak impact per unit mass ofLACs near SSAs of 0.1–0.01 m2 kg−1. For bare, bubble-free ice, LACsactually increase the albedo. SNICAR-ADv4 represents smooth transitionsbetween snow, firn, and ice surfaces and accurately reproduces measuredspectral albedos of a variety of glacier surfaces. This work paves the wayfor adapting SNICAR-ADv4 to be used in land ice model components of Earthsystem models. 
    more » « less
  2. null (Ed.)
    In 2016, 10 universities launched a Networked Improvement Community (NIC) aimed at increasing the number of scholars from Alliances for Graduate Education and the Professoriate (AGEP) populations entering science, technology, engineering, and mathematics (STEM) faculty careers. NICs bring together stakeholders focused on a common goal to accelerate innovation through structured, ongoing intervention development, implementation, and refinement. We theorized a NIC organizational structure would aid understandings of a complex problem in different contexts and accelerate opportunities to develop and improve interventions to address the problem. A distinctive feature of this NIC is its diverse institutional composition of public and private, predominantly white institutions, a historically Black university, a Hispanic-serving institution, and land grant institutions located across eight states and Washington, DC, United States. NIC members hold different positions within their institutions and have access to varied levers of change. Among the many lessons learned through this community case study, analyzing and addressing failed strategies is as equally important to a healthy NIC as is sharing learning from successful interventions. We initially relied on pre-existing relationships and assumptions about how we would work together, rather than making explicit how the NIC would develop, establish norms, understand common processes, and manage changing relationships. We had varied understandings of the depth of campus differences, sometimes resulting in frustrations about the disparate progress on goals. NIC structures require significant engagement with the group, often more intensive than traditional multi-institution organizational structures. They require time to develop and ongoing maintenance in order to advance the work. We continue to reevaluate our model for leadership, climate, diversity, conflict resolution, engagement, decision-making, roles, and data, leading to increased investment in the success of all NIC institutions. Our NIC has evolved from the traditional NIC model to become the Center for the Integration of Research, Teaching and Learning (CIRTL) AGEP NIC model with five key characteristics: (1) A well-specified aim, (2) An understanding of systems, including a variety of contexts and different organizations, (3) A culture and practice of shared leadership and inclusivity, (4) The use of data reflecting different institutional contexts, and (5) The ability to accelerate infrastructure and interventions. We conclude with recommendations for those considering developing a NIC to promote diversity, equity, and inclusion efforts. 
    more » « less